0 Could lights be the future of pesticides?

Led lights Pesticides have helped improve food production and fight off insect-borne diseases, but they also have a well-documented dark side. Various pesticides have been linked to birth defects, cancer and other health problems in humans, as well as declines in wildlife ranging from bees to bald eagles.

The modern success of organic and biodynamic farming has helped remind us what we can do without synthetic pesticides, but insects still cause major problems worldwide - especially mosquitoes. And now a boom in lighting technology is beginning to hint at unexpected alternatives to chemical pesticides: lasers and light-emitting diodes, or LEDs.

The basic idea of using light to fight insects isn't new. Bug zappers, for instance, have long taken advantage of flying insects' attraction to light. Yellow and green fluorescent lights are also commonly used to reduce insect activity. A reflective mulching sheet has even been found to repel aphids and whiteflies when placed between rows of crops.

But the rapid growth of lighting technology is now raising hopes for more ambitious strategies, some of which might eventually help reduce the need for synthetic pesticides.

Guiding lights

Scientists have known for more than a century that ultraviolet (UV) light can kill microbes, making it useful for purifying water, food and even air. But thanks to the advancement of LEDs and lasers in the past two decades, we can now make light do things that would have seemed impossible a century ago.

Unlike the wires and gases of incandescent and fluorescent bulbs, solid-state lighting offers intricate control over wavelength, color and tone. The boom in LED technology has been largely motivated by energy efficiency, but the environmental perks of LEDs are increasingly rivaled by other benefits like light therapy or pest control. That's due to technological growth as well as recent biological research on light, says Fred Maxik, co-founder and chief technology officer of Florida-based Lighting Science Group. (Full disclosure: Lighting Science Group is associated with Pegasus Capital Advisors, an MNN sponsor.)

"It took a convergence of scientific discovery about what light can do and the technological efficiency to be able to actually do it," Maxik says. "We can get a great deal of really interesting, fine controls now, where we can manipulate the wavelengths of light. And light is really the only energy by which life on this planet has been created and exists. So the fact that it can have all these other influences and powers in biology that we're just discovering is something that's really fascinating."

Laser tag

There are several ways light can be used to wage war on insects. One of the most radical methods, known as a "photonic fence," uses lasers to identify and shoot down mosquitoes in midair. The concept was unveiled several years ago by Washington-based Intellectual Ventures, which began developing it for the Bill & Melinda Gates Foundation in 2007 as a way to fight malaria. Critics have argued it's impractical, since malaria tends to plague rural parts of developing countries that have spotty or nonexistent electrical grids, making a network of laser fences seem implausible.

But thanks to improvements in laser technology as well as solar energy, the photonic fence is now powered by solar panels. Earlier this month, Intellectual Ventures' Global Good program announced a research agreement with Lighting Science Group to develop not just the photonic fence, but also other "field-ready prototypes that offer an environmentally responsible alternative to chemical pesticides."

The photonic fence uses an LED array to cast infrared light on a retroreflective surface several yards away, which sends the light back to a camera lens attached to the LED array. The lens can thus detect any insect that tries to cross this "fence" of infrared light - and that's where things get interesting.

When the photonic fence is breached, it immediately hits the intruder with a harmless diagnostic laser. This laser measures the insect's wingbeat frequency to identify the species; it's even sensitive enough to tell the difference between male and female mosquitoes, only the latter of which drink blood. Non-target insects are allowed to pass, but if the intruder turns out to be a female mosquito, a second laser hits her with just enough energy to burn off her wings. All this happens in a fraction of a second, before the mosquito has time to cross the fence and enter the protected area.

Read the full mnn article here.

Editorial Enquiries Editorial Enquiries

Contact Kerry Haywood

01952 897416
editorial@pitchcare.com

Customers Advertising

Contact Peter Britton

01952 898516
peter@pitchcare.com

Subscribe Subscribe to the Pitchcare Magazine

You can have each and every copy of the Pitchcare magazine delivered direct to your door for just £30 a year.